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Abstract. We describe results of Monte Carlo simulations on a model that seems to have 
the necessary ingredients to describe a disordered type-I1 superconductor in a magnetic 
field. Wecompute the freeenergywst toMiist thedirectionofthephaseofthecondensate 
and analyse the results by finite-size scaling. The results show convincingly that the model 
has different behaviour as a function of dimension: in d=4  the model clearly has a finite 
transition temperature; T,, while for d=2  only there is only a transition at T=O. 

Since fluctuation effects play a much more important role in high-temperature 
superconductors than in conventional superconducting materials, there has been a 
great deal of effort [I] to understand, the behaviour of type I1 superconductors in a 
magnetic field, including the effects of disorder, when one goes beyond the mean field 
picture of BCS or Ginzburg-Landau theories. One intriguing aspect which has emerged 
is the possibility of a vortex glass phase [2,3] in which the off-diagonal long-range 
order of the pair condensate has a phase which is random in space but frozen in time, 
much like the order parameter in a spin glass [4]. This can arise because the Abrikosov 
flux lattice, which forms in pure samples, is destroyed by disorder in less than four 
dimensions [SI beyond a certain length scale, ldk The phase of the condensate does 
not then form a regular periodic pattern on scales larger than I&, but, according to the 
vortex glass hypothesis, the system undergoes a transition into a spin glass-like state in 
which the phase is frozen in time. At the transition, the vortex glass correlation 
length, 5 diverges. A number of experiments [6] have found evidence for such a 
transition in the I-V characteristics of Y-B-CU-0 samples. Only if there is a vortex 
glass phase does the resistance really vanish [l] for H> H,,. Otherwise, the resistance 
is, in principle , finite because clusters of vortices on scale E can move by thermal 
activation over barriers, a process known as ‘flux creep’ 171. These effects are 
observable [SI in high-T, compounds since they have much larger fluctuations than 
conventional materials. 

In this letter we describe results of Monte Carlo simulations, analysed by finite- 
size-scaling techniques, on a model that seems to have the necessary ingredients to 
describe the vortex glass state. The results show convincingly the different behaviour 
occurring in different dimensions. In d=4 there is clearly a transition at finite 
transition temperature T, with vortex glass order at lower temperature, while in d = 2 
there is only a transition at T=O. Analogous results for d=3 have been presented 
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before [9], and indicate behaviour close to what is expected at the lower critical 
dimension, though with probably a finite T,. Our results for d=4 have been briefly 
described in a conference proceeding [lo]. We feel that it is useful to include them 
here as a contrast to the new results for d = 2  to emphasize the power of the 
finite-size-scaling technique in elucidating whether or not a glass-like transition 

The model that we study, known as the ‘gauge glass’, has the following 

. 
occurs. 

Hamiltonian: 

The phase, @;, is defined on each site of a regular lattice, square for two dimensions, 
simple cubic for d=3 and simple hypercubic for d-4, with N = L d  sites. Periodic 
boundary conditions are imposed. The sum is over all nearest neighbour pairs on the 
lattice. The effects of the magnetic field and disorder are represented by the quenched 
vector potentials, A,, which we take to be independent random variables with a 
uniform distribution between 0 and k. This model seems to be the simplest one with 
the correct ingredients of randomness, frustration and order parameter symmetry. It 
does, however, ignore screening, and therefore corresponds to an extreme type I1 
limit in which K=A/E+ m , where1 is the penetration length. Since K>> 1 in the high T, 
superconductors, this limit is not unreasonable. It is unclear, however, how much 
inclusion of screening via a fluctuating gauge field would modify the behaviour of 
equation (1). 

If the Ai, are restricted to the values 0 and n, the model becomes the XY spin glass, 
for which the lower critical dimension is believed [ll] to be four. However, earlier 
work [13,12,9], has shown that the gauge glass is in a different universality class from 
the XY spin glass, presumably because it does not have the ‘reflection’ symmetry, 
@;+-@;Vi [13]. 

As discussed before [9,12], it is useful to consider the change in free energy A F  
when one imposes a twist 0 along one of the space directions, x say. More precisely, 
the periodic boundary conditions, q5i=@i+Lp are replaced by the twisted boundary 
conditions, @i = + 0. By a simple redifinition of the phases q+ one can replace this 
situation by a system with periodic boundary conditions and an extra contribution, 
OIL, to the vector potential on bonds in the x-direction. 

By Monte Carlo methods one can~calculate derivatives of the free energy w.r.t. 0, 
so, for a single sample, we define a current, I, and a stiffness, Y, by 

aF 1 
I=-=-c (sinh,), 

i 
ae L 

1 
T . .  

c o s A i ) , - - E  [(sin A,sin AJT-(sin Ai),{sin AJr] 
‘ . I  

(3) 

where Ai=@i-$i+i-A,.,+,, F i s  the total free energy and i+f  refers to the nearest 
neighbour site in the x-direction from i. Note that both I and Yare gauge invariant so 
they are still useful even if one includes fluctuating gauge fields. 

Above T,, AF, and hence both I and Y, go to zero rapidly with increasing system 
size because the system is insensitive to boundary conditions when L is much greater 
than the vortex glass correlation length 6. If T, is finite, then, below T,, I and Y vary 
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with L as L8 where 0 (>O), is an exponent describing the low temperature phase. In 
other words, I and Y increme with increasing L below T,, the opposite of what 
happens above T,. Precisely at T,, both I and Y are independent of size. Hence if T, is 
finite, I and Y should come together at T, and splay out again at lower temperatures. 
By contrast, if T,=O, then, at T=O, I and Y vary as La but with 0<0. Consequently, I 
and Y decrease with L even at T= 0. 

In a disordered system, it is necessary to perform an average over different 
realizations of the disorder, which we indicate by [. . .I,,,. For the gauge glass, the 
average values of I and Yare both zero, i.e. 

[YIm= IIla,=O (4) 

because the configuration in which the vector potentials in the n direction have been 
increased by QIL has the same weight in the configurational average as the original 
choice of vector potentials. One is therefore interested in the root mean square 
fluctuation between samples. This means that many samples must be averaged over 
typically several thousand. If T. is finite, the finite size scaling form for the r.m.s. 
current, A I  is therefore 

AI- [ I * ] ~ ~ ’  = i (L1”(T-  Tc)) (Tc>O) ( 5 )  
where vis the correlation length exponent. We shall concentrate on the r.m.s. current 
in what follows, rather than the stiffness, because sample to sample fluctuations in the 
stiffness have an asymmetric distribution with a long tail, which makes it difficult to 
get good statistics [9]. If T,= 0 then A I  decreases with size even at T= 0, i.e. A I -  LB 
where 0 is negative and related to the exponent v giving the divergence of the 
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FIgure1. The r.m.s. current, A I I = [ I ‘ ] ~ ~ ~ ,  for d = 4  determined by Monte Carlo simula- 
tions for different sizes and temperatures. The C U N ~ S  for different sizes are expected to 
come together at T, and, if there is order in the low temperature state, to splay out again at 
lower temperatures. The data does indeed follow this behaviour. 
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Figurz 2. The same data as in figure 1 but in a finite six scaling pIot, with T. =O.% and 
v=0.7. 

correlation length as T-0 by -6= l lv.  The finite size scaling form is then 

L'"Al= @"T) (Tc=O). (6) 
Tests to ensure equilibration were camed out as described elsewhere [14]. 
We first show results for d=4, [lo]. Figure 1 shows clearly that the data for the 

r.m.s. current for different sizes come together at T =  T,=0.95 and then splay out 
again on the low temperature side, just as expected at a finite temperature transition. 

FigurzL The i n s .  current, AI=[f']:?.  for d = 2  determined by Monte Carlo simula- 
tions for different Sizes and temperatures. The curves for different sizes do not come 
together, even at the lowest temperature. This behaviour indicates a transition at T=O. ' 
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F i 4 .  The same data as in figure 4 but in a finite size scaling plot, with T,=O and 
v=2.2. 

This provides unambiguous evidence that there is a vortex glass transition in four 
dimensions (and presumably also in higher dimensions) with vortex-glass order on the 
low-temperature side. A scaling plot corresponding to (5) is shown in figure 2. From 
the fit we estimate 

TC=0.96f0.01 v=0.7f0.15 (d=4). (7) 
Next we discuss the case of d=2.  The results for AI are shown in figure 3. Notice 

that they are quite different from figure 1, since, even at the lowest temperature, AI 
decreases with increasing size. This is precisely what is expected at a zero temperature 
transition, and the scaling plot in figure 4 corresponding to (6) works very well. From 
the fit we estimate 

T,=O v = 2.2 * 0.2 (d=2). (8) 
The value for Y agrees with earlier work [12], in which a different finite-size-scaling 
technique was used. Recent experiments [U] on very thin (16A) films of YBCO have 
provided striking confirmation that T, = 0 for the vortex glass in two dimensions. 
Furthermore, it is found that nonlinear current-voltage characteristics set in when the 
current density exceeds a value, J,,, which, according to scaling theory [12] varies with 
temperature as TI+”. According to conventional flux creep theory, there is no 
divergent length scale as T-0, which corresponds to setting v=O. The experiments 
[15] find 1 + v=3.0+0.3, in excellent agreement with the results presented here and 
in [12], but in clear disagreement with the flux creep theory We emphasize, then, that 
the vortex glass picture leads to measurable consequences even when T,= 0. 

To conclude, we have shown that a Monte Carlo calculation of the change in free 
energy due to a twist in the boundary conditions combined with finite size scaling is a 
very powerful tool for systems with XY-like symmetry. We have shown that it clearly 
distinguishes between the finite temperature transition in the d =  4 gauge glass and the 
zero temperature transition of the two-dimensional model. 
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